(window.webpackJsonp_N_E=window.webpackJsonp_N_E||[]).push([[21],{"/UPq":function(a,e){a.exports=""},"2DOB":function(a,e){a.exports=""},"91QH":function(a,e){a.exports=""},EZDy:function(a,e){a.exports=""},"Fa/1":function(a,e,A){a.exports={mobile:"InstallButton_mobile__1akDs",installButton:"InstallButton_installButton__bVUWh"}},JeRv:function(a,e){a.exports=""},JmlY:function(a,e){a.exports=""},NZRP:function(a,e){a.exports="https://bingedu.azureedge.net/mathuxjs/_next/static/images/algebra-69f01da7fb1f208be047bac77f6359e3.png"},TRUB:function(a,e){a.exports=""},UXvR:function(a,e,A){"use strict";A.d(e,"b",(function(){return w})),A.d(e,"a",(function(){return v}));var s=A("YFqc"),r=A.n(s),n=A("q1tI"),t=A.n(n),i=A("1OyB"),o=A("vuIU"),c=A("JX7q"),l=A("Ji7U"),x=A("md7G"),g=A("foSv"),p=A("rePB"),E=A("JBGY"),d=A("DnYU"),u=A("eF4C"),m=A("Fa/1"),f=A.n(m),B=A("OLIE"),C=A("5jpu"),b=A("O0Jb"),y=t.a.createElement;function I(a){var e=function(){if("undefined"===typeof Reflect||!Reflect.construct)return!1;if(Reflect.construct.sham)return!1;if("function"===typeof Proxy)return!0;try{return Date.prototype.toString.call(Reflect.construct(Date,[],(function(){}))),!0}catch(a){return!1}}();return function(){var A,s=Object(g.a)(a);if(e){var r=Object(g.a)(this).constructor;A=Reflect.construct(s,arguments,r)}else A=s.apply(this,arguments);return Object(x.a)(this,A)}}var F=function(a){Object(l.a)(A,a);var e=I(A);function A(a){var s;return Object(i.a)(this,A),s=e.call(this,a),Object(p.a)(Object(c.a)(s),"context",void 0),Object(p.a)(Object(c.a)(s),"installAndroidOnClick",(function(){E.a.LogEvent("AppLinkOpen",{store:"android"})})),Object(p.a)(Object(c.a)(s),"installiOSOnClick",(function(){E.a.LogEvent("AppLinkOpen",{store:"ios"})})),Object(p.a)(Object(c.a)(s),"mobileInstallOnClick",(function(){E.a.LogEvent(d.a.UpsellBanner_MobileInstallClick)})),s.state={platform:u.e.Unknown,launchMode:Object(C.a)()},s}return Object(o.a)(A,[{key:"componentDidMount",value:function(){this.setState({platform:Object(u.c)(),launchMode:Object(C.a)()})}},{key:"render",value:function(){var a=this.props.language,e=this.state,A=e.launchMode,s=e.platform,r="en"===a?"Use app":this.context.MathWeb_GenericDownload;return A===B.a.Installed?null:s===u.e.Android?y("a",{key:"android",className:f.a.mobile,onClick:this.installAndroidOnClick,href:"https://play.google.com/store/apps/details?id=com.microsoft.math",rel:"noopener noreferrer",target:"_blank"},y("div",{className:f.a.installButton},r)):s===u.e.IPhone||s===u.e.IPad?y("a",{className:f.a.mobile,key:"ios",onClick:this.installiOSOnClick,href:"https://apps.apple.com/us/app/microsoft-math-solver/id1483962204?_branch_match_id=680484335697283429",rel:"noopener noreferrer",target:"_blank"},y("div",{className:f.a.installButton},r)):y(t.a.Fragment,null,y("a",{className:f.a.mobile,key:"both",onClick:this.mobileInstallOnClick,href:"https://9wshp.app.link/ZGQiJV5XU1",rel:"noopener noreferrer",target:"_blank"},y("div",{className:f.a.installButton},this.context.MathWeb_GenericDownload)))}}]),A}(t.a.Component);Object(p.a)(F,"contextType",b.a);var U=A("y3WU"),h=A("x6Vc"),D=A.n(h),Q=A("hoIW"),R=t.a.createElement,w=function(){var a=document.getElementById("mnav");a&&a.classList.add("show");var e=document.getElementById("mnav-open");e&&e.classList.add("hidden");var A=document.getElementById("mnav-close");A&&A.classList.remove("hidden"),document.body.classList.add("hideOverflow")},v=function(){var a=document.getElementById("mnav");a&&a.classList.remove("show");var e=document.getElementById("mnav-open");e&&e.classList.remove("hidden");var A=document.getElementById("mnav-close");A&&A.classList.add("hidden"),document.body.classList.remove("hideOverflow")};e.c=function(){var a=Object(n.useContext)(Q.a).language;return R("div",{id:"mnav",className:D.a.c,onClick:function(){v()}},R("div",null,R(r.a,{href:"/[language]/solver",as:"/".concat(a,"/solver")},R("a",{className:D.a.link+" t1",style:{paddingTop:24}},R("span",null,"Solve"))),R(r.a,{href:"/[language]/quiz",as:"/".concat(a,"/quiz")},R("a",{className:D.a.link+" t1",style:{paddingBottom:24}},R("span",null,"Practice"))),R(U.a,{isForMobile:!0}),R(F,{language:a})))}},VaZQ:function(a,e,A){a.exports={calculatorList:"CalculatorList_calculatorList__2Y7fe",separator:"CalculatorList_separator__aboBj"}},ZCun:function(a,e,A){"use strict";var s=A("YFqc"),r=A.n(s),n=A("q1tI"),t=A.n(n),i=A("PyTw"),o=A("UXvR"),c=A("gFTN"),l=A("hoIW"),x=A("5jpu"),g=A("OLIE"),p=A("O0Jb"),E=t.a.createElement;e.a=function(){var a=Object(n.useContext)(l.a).language,e=Object(x.a)()===g.a.Installed,s=Object(n.useContext)(p.a);return E("header",null,E("div",{className:"page-header"},E("div",{className:"phc"},E("button",{id:"mnav-open",onClick:o.b,className:"ham","aria-label":s.MathWeb_Navigation},E("img",{alt:"",src:A("a3dZ"),className:"light"}),E("img",{alt:"",src:A("JmlY"),className:"dark"})),E("button",{id:"mnav-close",onClick:o.a,className:"ham-close hidden","aria-label":s.Generic_Close},E("img",{alt:"",src:A("/UPq"),className:"light"}),E("img",{alt:"",src:A("TRUB"),className:"dark"})),E(c.a,{className:"brand",href:"/[language]",as:"/".concat(a)},E(i.a,{className:"app-logo",webp:A("f6jn"),png:A("tZrS"),alt:"Microsoft Math Solver"}),E("h1",{className:"name"},"Microsoft Math Solver")),E("div",{className:"spacer"}),E(r.a,{href:"/[language]/solver",as:"/".concat(a,"/solver")},E("a",{className:"link solve"},E("span",null,s.KeyboardInput_Solve))),E(r.a,{href:"/[language]/quiz",as:"/".concat(a,"/quiz")},E("a",{className:"link practice"},E("span",null,s.MathPracticeProblem_SectionHeader))),!e&&E(r.a,{href:"/[language]/download",as:"/".concat(a,"/download")},E("a",{className:"link"},E("span",null,s.MathWeb_GenericDownload))))))}},a3dZ:function(a,e){a.exports=""},anoN:function(a,e,A){"use strict";var s=A("q1tI"),r=A.n(s),n=A("MGIN"),t=A("wKAE"),i=A.n(t),o=A("hoIW"),c=A("O0Jb"),l=r.a.createElement;e.a=function(a){var e=a.hideLanguage,A=a.marginTop,t=Object(s.useContext)(o.a).language,x=Object(s.useContext)(c.a),g="fr"===t&&l(r.a.Fragment,null,l("li",null,l("span",null,"Accessibilit\xe9 : partiellement conforme")),l("li",null,l("a",{href:"https://www.microsoft.com/fr-fr/accessibility/accessibility-statement"},"Accessibilit\xe9")));return l("footer",{className:i.a.siteFooter,style:A?{marginTop:A}:{},"aria-label":"Microsoft corporate links"},l("div",{className:i.a.centeredContainerContent},!0!==e&&l(n.a,{language:t}),l("div",{className:i.a.footerContent},l("ul",null,l("li",null,l("a",{href:"https://math.microsoft.com/"+t},x.Generic_About)),l("li",null,l("a",{href:"https://mathsolver.microsoft.com/".concat(t,"/popular-problems")},x.MathWeb_PopularProblems)),l("li",null,l("a",{href:"https://go.microsoft.com/fwlink/?LinkId=521839"},x.Generic_PrivacyPolicy)),l("li",null,l("a",{href:"https://go.microsoft.com/fwlink/?LinkID=206977"},x.Generic_TermOfUse)),l("li",null,l("a",{href:"https://www.microsoft.com/trademarks"},"Trademarks")),g,l("li",null,"\xa9Microsoft ",(new Date).getFullYear())))))}},c7LZ:function(a,e){a.exports=""},fBCP:function(a,e,A){a.exports={c:"MainNav_c__3mt10",n:"MainNav_n__2SB96",cc:"MainNav_cc__vZuOj"}},"k/rM":function(a,e){a.exports=""},lkHO:function(a,e,A){"use strict";A.d(e,"a",(function(){return s})),A.d(e,"b",(function(){return t}));A("1OyB"),A("rePB");var s=[{Key:"pre-algebra",SubTopics:[{Key:"mean",Examples:[{Expression:"mean(12,16)"},{Expression:"mean(25,30)"},{Expression:"mean(3,4)"},{Expression:"mean(11,24,34,45,56)"},{Expression:"mean(1,2,3,4,5,6,7,8,9,10)"},{Expression:"mean(40,45,56)"}]},{Key:"mode",Examples:[{Expression:"mode(1,2,3,2,1,2,3)"},{Expression:"mode(1,2,3)"},{Expression:"mode(20,34,32,35,45,32,45,32,32)"},{Expression:"mode(2,4,5,3,2,4,5,6,4,3,2)"},{Expression:"mode(10,11,10,12)"},{Expression:"mode(1,1,2,2,3,3)"}]},{Key:"gcf",Examples:[{Expression:"gcf(12,16)"},{Expression:"gcf(25,30)"},{Expression:"gcf(3,4)"},{Expression:"gcf(20,32)"},{Expression:"gcf(100,40)"},{Expression:"gcf(105,55,30)"}]},{Key:"lcm",Examples:[{Expression:"lcm(12,16)"},{Expression:"lcm(25,30)"},{Expression:"lcm(3,4)"},{Expression:"lcm(1,2,3,4,5)"},{Expression:"lcm(20,45,10)"},{Expression:"lcm(2,3,5,6,10)"}]},{Key:"order-of-operations",Examples:[{Expression:"4 - 3 \\times 6 + 2"},{Expression:"(4 - 3) \\times 6 + 2"},{Expression:"4 - 3 \\times (6 + 2) ^ 2"},{Expression:"\\frac{4-3}{6}+2^2"},{Expression:"5-4(7-9(5-1)) \\times 3^3 -4"},{Expression:"12-2(7-4)^2 \\div 4"},{Expression:"\\frac{ \\left( 4-3 \\right) + { \\left( 1+2 \\right) }^{ 2 } }{ 6+ \\left( 7-5 \\right) }"}]},{Key:"fractions",Examples:[{Expression:"\\frac{ 4 }{ 12 } - \\frac{ 9 }{ 7 }"},{Expression:"\\frac{ 4 }{ 12 } \\times \\frac{ 9 }{ 8 }"},{Expression:"\\frac{ 4 }{ 12 } \\div \\frac{ 9 }{ 8 }"},{Expression:"\\frac{ 4 }{ 12 } + \\frac{ 9 }{ 8 }"},{Expression:"\\frac{ 4 }{ 12 } + \\frac{ 9 }{ 8 } \\times \\frac{15}{3} - \\frac{26}{10}"},{Expression:"\\frac{ 1 }{ 8 } + 2 ( \\frac{ 9 }{ 7 } ) \\div \\frac{15}{3}"}]},{Key:"mixed-fractions",Examples:[{Expression:"3 \\frac{ 3 }{ 7 }"},{Expression:"4 \\frac{ 15 }{ 32 } "},{Expression:"1 \\frac{ 1 }{ 2 } +3 \\frac{ 4 }{ 5 } "},{Expression:"1 \\frac{ 1 }{ 2 } -3 \\frac{ 4 }{ 5 } "},{Expression:"1 \\frac{ 1 }{ 2 } \\times 3 \\frac{ 4 }{ 5 } "},{Expression:"1 \\frac{ 1 }{ 2 } \\div 3 \\frac{ 4 }{ 5 } "}]},{Key:"prime-factorization",Examples:[{Expression:"factor(100)"},{Expression:"factor(42)"},{Expression:"factor(662)"},{Expression:"factor(330)"},{Expression:"factor(1440)"},{Expression:"factor(7700)"}]},{Key:"exponents",Examples:[{Expression:"x \\cdot x^2 \\cdot 3x"},{Expression:"n^4 \\cdot 2n^2 \\cdot n^5"},{Expression:"(2a \\cdot 3b^2)^2 \\cdot c \\cdot (2bc^3)^3"},{Expression:"\\frac{a^6b^2}{2ab}"},{Expression:"\\frac{x^3y^5}{3x} \\times \\frac{y^4}{x^2}"},{Expression:"\\frac{x^3y^5}{3x} \\div \\frac{y^4}{x^2}"}]},{Key:"radicals",Examples:[{Expression:"\\sqrt{40}"},{Expression:"\\sqrt{99a^3}"},{Expression:"\\sqrt{\\frac{16}{25}}"},{Expression:"\\sqrt{3} \\times \\sqrt{3a^4}"},{Expression:"\\sqrt{\\sqrt{256a^8}}"},{Expression:"\\sqrt{196}"}]}]},{Key:"algebra",SubTopics:[{Key:"combine-like-terms",Examples:[{Expression:"3x+4y-11-2x+4y"},{Expression:"-4x-3+2x"},{Expression:"40m-3n+2m-6+12m"},{Expression:"2a-3a^2+4a+6a^2"},{Expression:"4+3ab+4a+8b^2-2a(3b+4)"},{Expression:"r(r+s)-2r^2+rs-s(s-3r)"}]},{Key:"solve-for-variable",Examples:[{Expression:"3(r+2s)=2t-4"},{Expression:"a \\cdot (b-2) = 3b"},{Expression:"b-y=-mx"},{Expression:"\\frac{3a}{b}=c"}]},{Key:"factor",Examples:[{Expression:"x^2-7x+12"},{Expression:"x^2-4x-12"},{Expression:"x^2+11x+24"},{Expression:"x^2-6x-160"},{Expression:"3x^2-10x+8"},{Expression:"x^2-8x+16"},{Expression:"x^3-64"}]},{Key:"expand",Examples:[{Expression:"(x+9)(x-9)"},{Expression:"6(x+2)"},{Expression:"7x(2x-4)"},{Expression:"3(x-3)(4x-4)"},{Expression:"2x{(x-6)}^{2}"},{Expression:"(x-3)(x+2)(x-1)"}]},{Key:"evaluate-fractions",Examples:[{Expression:"\\frac{4}{x-2} - \\frac{5}{x+1}"},{Expression:"\\frac{24}{x-3} + \\frac{15}{3x+1}"},{Expression:"\\frac{7x}{x-6} \\div \\frac{x}{3{(x-6)}^{2}}"}]},{Key:"linear-equations",Examples:[{Expression:"5 = 2x + 3"},{Expression:"5b = -2b + 3"},{Expression:"\\frac{r-3}{4}=2r"},{Expression:"3(a-5)=2(6+a)"},{Expression:"\\frac{3n+6}{n-4}=2"}]},{Key:"quadratic-equations",Examples:[{Expression:"x^2-3x=28"},{Expression:"x ^ { 2 } - 5 x + 3 y = 20"},{Expression:"x^2-10x+25=0"},{Expression:"2x^2+12x+40=0"},{Expression:"\\frac{1}{3}=m+\\frac{m-1}{m}"},{Expression:"\\frac{2}{b-3}-\\frac{6}{2b+1}=4"}]},{Key:"inequalities",Examples:[{Expression:"3x+4>6"},{Expression:"x+y<0"},{Expression:"5 > 2x + 3"},{Expression:"-2 < 3x+2 < 8"},{Expression:"2x^2 \\geq 50"},{Expression:"\\frac{5}{3x+3} \\leq 8"}]},{Key:"systems-of-equations",Examples:[{Expression:"\\left\\{ \\begin{array} { l } { 8 x + 2 y = 46 } \\\\ { 7 x + 3 y = 47 } \\end{array} \\right."},{Expression:"\\left\\{ \\begin{array} { l } { 3 x = 24 } \\\\ { x + 3 y = 17 } \\end{array} \\right."},{Expression:"\\left\\{ \\begin{array} { l } { x = 5y + 5 } \\\\ { 6 x - 4 y = 7 } \\end{array} \\right."},{Expression:"\\left\\{ \\begin{array} { l } { x = y + 2z } \\\\ { 3 x - z = 7 } \\\\ { 3 z - y = 7 } \\end{array} \\right."},{Expression:"\\left\\{ \\begin{array} { l } { a + b + c + d = 20 } \\\\ { 3a -2c = 3 } \\\\ { b + d = 6} \\\\ { c + b = 8 } \\end{array} \\right."}]},{Key:"matrices",Examples:[{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right]"},{Expression:"6 \\times \\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right]"},{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right] \\left[ \\begin{array} { l l l } { 2 } & { 0 } & { 3 } \\\\ { -1 } & { 1 } & { 5 } \\end{array} \\right]"},{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right] + \\left[ \\begin{array} { l l l } { 2 } & { 0 } \\\\ { -1 } & { 1 } \\end{array} \\right]"},{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right] - \\left[ \\begin{array} { l l l } { 0 } & { 3 } \\\\ { 1 } & { 5 } \\end{array} \\right]"},{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right] \\times \\left[ \\begin{array} { l l l } { 0 } & { 3 } \\\\ { 1 } & { 5 } \\end{array} \\right]"},{Expression:"\\left[ \\begin{array} { l l } { 2 } & { 3 } \\\\ { 5 } & { 4 } \\end{array} \\right] ^ 2"}]}]},{Key:"trigonometry",SubTopics:[{Key:"simplify",Examples:[{Expression:"{ \\left( \\sin ( x ) \\right) }^{ 2 } \\cdot \\left( { \\left( \\cot ( x ) \\right) }^{ 2 } +1 \\right)"},{Expression:"\\cot ( x ) \\sec ( x ) \\sin ( x )"},{Expression:"\\tan ( x ) \\cdot \\left( \\csc ( x ) - \\sin ( x ) \\right)"}]},{Key:"evaluate",Examples:[{Expression:"\\cos ( \\pi )"},{Expression:"\\sin ( \\frac { \\pi } { 2 } )"},{Expression:"\\tan ( \\frac { 4 \\pi } { 3 } )"},{Expression:"\\csc ( 60 )"},{Expression:"\\sec ( 180 )"},{Expression:"\\cot ( \\frac { 4 \\pi } { 3 } )"}]},{Key:"graphs",Examples:[{Expression:"\\tan ( x )"},{Expression:"\\sec ( x )"},{Expression:"\\sin ( x ) = \\cos ( x )"},{Expression:"\\cot ( x )"},{Expression:"\\cos ( x )"},{Expression:"\\csc ( x )"}]},{Key:"solve-equations",Examples:[{Expression:"\\cos ( 3x + \\pi ) = 0.5"},{Expression:"\\sin ( x ) = 1"},{Expression:"\\sin ( x ) - cos ( x ) = 0"},{Expression:"\\sin ( x ) + 2 = 3"},{Expression:"{ \\tan ( x ) } ^ {2} = 4"}]}]},{Key:"calculus",SubTopics:[{Key:"derivatives",Examples:[{Expression:"\\frac { d } { d x } ( 2 )"},{Expression:"\\frac { d } { d x } ( 4 x )"},{Expression:"\\frac { d } { d x } ( 6 x ^ 2 )"},{Expression:"\\frac { d } { d x } ( 3x+7 )"},{Expression:"\\frac { d } { d a } ( 6a ( a -2) )"},{Expression:"\\frac { d } { d z } ( \\frac{z+3}{2z-4} )"}]},{Key:"integrals",Examples:[{Expression:"\\int{ 1 }d x"},{Expression:"\\int{ 3x }d x"},{Expression:"\\int{ x^4 }d x"},{Expression:"\\int{ 7x + 8 }d x"},{Expression:"\\int{ \\frac{1}{x} }d x"},{Expression:"\\int{ cos(x) }d x"}]},{Key:"limits",Examples:[{Expression:"\\lim_{ x \\rightarrow 0 } 5"},{Expression:"\\lim_{ x \\rightarrow 0 } 5x"},{Expression:"\\lim_{ x \\rightarrow 0 } \\frac{2}{x}"},{Expression:"\\lim_{ x \\rightarrow 0 } \\frac{1}{x^2}"}]}]}],r={},n={};s.forEach((function(a){r[a.Key]=a,a.SubTopics.forEach((function(e){n[a.Key+e.Key]=e}))}));var t=function(a,e){return n["".concat(a).concat(e||"")]}},tGC7:function(a,e){a.exports=""},wKAE:function(a,e,A){a.exports={siteFooter:"SiteFooter_siteFooter__2Ethz",noMargin:"SiteFooter_noMargin__2CV7N",centeredContainerContent:"SiteFooter_centeredContainerContent__3Sc65",footerContent:"SiteFooter_footerContent__kKz0d"}},x6Vc:function(a,e,A){a.exports={c:"MobileNav_c__1UHVo",link:"MobileNav_link__2ftih"}},y3WU:function(a,e,A){"use strict";var s=A("q1tI"),r=A.n(s),n=A("lkHO"),t=A("YFqc"),i=A.n(t),o=A("VaZQ"),c=A.n(o),l=A("k/rM"),x=A.n(l),g=A("JeRv"),p=A.n(g),E=A("91QH"),d=A.n(E),u=A("EZDy"),m=A.n(u),f=A("NZRP"),B=A.n(f),C=A("c7LZ"),b=A.n(C),y=A("tGC7"),I=A.n(y),F=A("2DOB"),U=A.n(F),h=A("O0Jb"),D=r.a.createElement,Q=function(a){var e=a.language,A=Object(s.useContext)(h.a);return D("div",{className:c.a.calculatorList},D(i.a,{as:"/".concat(e,"/algebra-calculator"),href:"/[language]/algebra-calculator"},D("a",null,D("img",{className:"light",src:B.a,alt:A.MathWeb_AlgebraCalculator}),D("img",{className:"dark",src:x.a,alt:A.MathWeb_AlgebraCalculator}),D("span",null,A.MathWeb_AlgebraCalculator))),D("div",{className:c.a.separator}),D(i.a,{as:"/".concat(e,"/trigonometry-calculator"),href:"/[language]/trigonometry-calculator"},D("a",null,D("img",{className:"light",src:U.a,alt:A.MathWeb_TrigCalculator}),D("img",{className:"dark",src:m.a,alt:A.MathWeb_TrigCalculator}),D("span",null,A.MathWeb_TrigCalculator))),D("div",{className:c.a.separator}),D(i.a,{as:"/".concat(e,"/calculus-calculator"),href:"/[language]/calculus-calculator"},D("a",null,D("img",{className:"light",src:b.a,alt:A.MathWeb_CalculusCalculator}),D("img",{className:"dark",src:p.a,alt:A.MathWeb_CalculusCalculator}),D("span",null,A.MathWeb_CalculusCalculator))),D("div",{className:c.a.separator}),D(i.a,{as:"/".concat(e,"/matrix-calculator"),href:"/[language]/matrix-calculator"},D("a",null,D("img",{className:"light",src:I.a,alt:A.MathWeb_MatrixCalculator}),D("img",{className:"dark",src:d.a,alt:A.MathWeb_MatrixCalculator}),D("span",null,A.MathWeb_MatrixCalculator))))},R=A("fBCP"),w=A.n(R),v=A("soVV"),j=A("iOLm"),M=A("hoIW"),V=A("aHNQ"),Z=r.a.createElement,K={chevronButton:{borderStyle:"none"}},W=function(a){var e;return Z(i.a,{href:"/[language]/topic/[topic]/[subtopic]",as:null===(e=a.link)||void 0===e?void 0:e.url},Z(j.ActionButton,a))};e.a=function(a){var e=Object(s.useContext)(M.a).language,A=Object(s.useContext)(h.a),t=n.a.map((function(s){return{name:Object(V.a)(s.Key,A),expandAriaLabel:"Expand ".concat(s.Key," section"),collapseAriaLabel:"Collapse ".concat(s.Key," section"),collapseByDefault:a.topic!==s.Key,links:s.SubTopics.map((function(a){return{key:a.Key,name:Object(V.a)(a.Key,A),url:"/".concat(e,"/topic/").concat(s.Key,"/").concat(a.Key)}}))}}));return Z(r.a.Fragment,null,Z("div",{className:w.a.c},Z("h3",{className:"t1"},A.MathWeb_Topics),Z(v.Nav,{linkAs:W,className:w.a.n,styles:K,ariaLabel:A.MathWeb_Topics,groups:t})),Z("div",{className:w.a.c+" "+w.a.cc},Z(Q,{language:e})))}}}]);